# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "PIE" in publications use:' type: software license: GPL-2.0-only title: 'PIE: A Partially Interpretable Model with Black-Box Refinement' version: 1.0.0 identifiers: - type: doi value: 10.32614/CRAN.package.PIE abstract: Implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) . authors: - family-names: Wang given-names: Tong - family-names: Yang given-names: Jingyi email: jy4057@stern.nyu.edu - family-names: Li given-names: Yunyi - family-names: Wang given-names: Boxiang preferred-citation: type: article title: 'Partially interpretable estimators (PIE): black-box-refined interpretable machine learning' authors: - family-names: Wang given-names: Tong - family-names: Yang given-names: Jingyi email: jy4057@stern.nyu.edu - family-names: Li given-names: Yunyi - family-names: Wang given-names: Boxiang journal: arXiv preprint arXiv:2105.02410 year: '2021' repository: https://misstiny.r-universe.dev commit: ca2c6b06d64bb0a0a60fee4d3b8ed1dde339784d date-released: '2025-01-20' contact: - family-names: Yang given-names: Jingyi email: jy4057@stern.nyu.edu